Dual Drug Release Electrospun Core-Shell Nanofibers with Tunable Dose in the Second Phase
نویسندگان
چکیده
This study reports a new type of drug-loaded core-shell nanofibers capable of providing dual controlled release with tunable dose in the second phase. The core-shell nanofibers were fabricated through a modified coaxial electrospinning using a Teflon-coated concentric spinneret. Poly(vinyl pyrrolidone) and ethyl cellulose were used as the shell and core polymer matrices respectively, and the content of active ingredient acetaminophen (APAP) in the core was programmed. The Teflon-coated concentric spinneret may facilitate the efficacious and stable preparation of core-shell nanofibers through the modified coaxial electrospinning, where the core fluids were electrospinnable and the shell fluid had no electrospinnability. The resultant nanofibers had linear morphologies and clear core-shell structures, as observed by the scanning and transmission electron microscopic images. APAP was amorphously distributed in the shell and core polymer matrices due to the favorite second-order interactions, as indicated by the X-ray diffraction and FTIR spectroscopic tests. The results from the in vitro dissolution tests demonstrated that the core-shell nanofibers were able to furnish the desired dual drug controlled-release profiles with a tunable drug release amount in the second phase. The modified coaxial electrospinning is a useful tool to generate nanostructures with a tailored components and compositions in their different parts, and thus to realize the desired functional performances.
منابع مشابه
Design and performance investigation of electrospun PVA nanofibers containing core-shell nanostructures for anticancer drug delivery
Objective: The purpose of this work was design and performance investigation of a nanocarrier based on magnetic nanofibers containing core-shell nanostructuresfor anticancerdrug delivery of daunorubicin (DAN) by measuring their drug release at different pH values. Methods: Fe3O4 nanoparticles and Fe3O4@SiO2core-shell nanostructures were synthesized through coprecipitation and Stöber methodresp...
متن کاملInvestigation of drug release from paclitaxel loaded polylactic acid nanofibers
Objective(s): In this study, drug loaded electrospun nanofibrous mats were prepared and drug release and mechanism from prepared nanofibers were investigated. Materials and Methods: Paclitaxel (PTX) loaded polylactic acid (PLA) nanofibers were prepared by electrospinning. The effects of process parameters, such as PTX concentration, tip to collector distance, voltage, temperature and flow rate...
متن کاملTunable biphasic drug release from ethyl cellulose nanofibers fabricated using a modified coaxial electrospinning process
This manuscript reports a new type of drug-loaded core-shell nanofibers that provide tunable biphasic release of quercetin. The nanofibers were fabricated using a modified coaxial electrospinning process, in which a polyvinyl chloride (PVC)-coated concentric spinneret was employed. Poly (vinyl pyrrolidone) (PVP) and ethyl cellulose (EC) were used as the polymer matrices to form the shell and co...
متن کاملPreparation and evaluation of electrospun nanofibers containing pectin and time-dependent polymers aimed for colonic drug delivery of celecoxib
Objective(s):The aim of this study was to prepare electrospun nanofibers of celecoxib using combination of time-dependent polymers with pectin to achieve a colon-specific drug delivery system for celecoxib. Materials and Methods:Formulations were produced based on two multilevel 22 full factorial designs. The independent variables were the ratio of drug:time-dependent polymer (X1) and the amoun...
متن کاملSynthesis of Polypyrrole Coated SnO2-ZnO Electrospun Nanofibers via Vapor Phase Polymerization Method
This paper reports the synthesis of polypyrrole coated SnO2/ZnOelectrospunnanofibers via vapor phase polymerization method. In order to prepare one dimensional (SnO2- ZnO)/polypyrrole with the core sheath structure, first SnO2-ZnO composite nanofibers were synthesized via electrospinning method followed by adsorption of Fe 3+ on the surface of the SnO2-ZnO nanofibers and finally pyrrole w...
متن کامل